Statistical inference in partially-varying-coefficient single-index model

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Varying-coefficient single-index model

In this paper, the varying-coefficient single-indexmodel (VCSIM) is proposed. It can be seen as a generalization of the semivaryingcoefficient model by changing its constant coefficient part to a nonparametric component, or a generalization of the partially linear single-indexmodel by replacing the constant coefficients of its linear part with varying coefficients. Based on the local linear met...

متن کامل

Statistical Inference for Varying Coefficient Models

This dissertation contains two projects that are related to varying coefficient models. The traditional least squares based kernel estimates of the varying coefficient model will lose some efficiency when the error distribution is not normal. In the first project, we propose a novel adaptive estimation method that can adapt to different error distributions and provide an efficient EM algorithm ...

متن کامل

Bias-corrected statistical inference for partially linear varying coefficient errors-in-variables models with restricted condition

In this paper, we consider the statistical inference for the partially liner varying coefficient model with measurement error in the nonparametric part when some prior information about the parametric part is available. The prior information is expressed in the form of exact linear restrictions. Two types of local bias-corrected restricted profile least squares estimators of the parametric comp...

متن کامل

Varying-coefficient single-index signal regression

Article history: Received 26 September 2014 Accepted 6 February 2015 Available online 28 February 2015

متن کامل

Statistical Inference for Semiparametric Varying-coefficient Partially Linear Models with Error-prone Linear Covariates

We study semiparametric varying-coefficient partially linear models when some linear covariates are not observed, but ancillary variables are available. Semiparametric profile least-square based estimation procedures are developed for parametric and nonparametric components after we calibrate the error-prone covariates. Asymptotic properties of the proposed estimators are established. We also p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Multivariate Analysis

سال: 2011

ISSN: 0047-259X

DOI: 10.1016/j.jmva.2010.07.005